Using Trusted Execution Environments On High-Performance Computing Platforms

Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power, Sean Peisert
Secure High-Performance Computing

How to compute with large sensitive data?
Biomedical data
Proprietary data

Secure from both external and internal threats
Integrity or confidentiality or both
High-Performance Computing Workloads

Common characteristics
- Large data sets (10s–100s GB per node)
- Limited user interaction (batch)
- Often highly multithreaded

Dedicated (super computers) or shared (cloud) nodes

Diverse compute, memory, and security requirements
We Analyze Two TEEs

<table>
<thead>
<tr>
<th>Technology</th>
<th>Ensures Integrity</th>
<th>TCB Size</th>
<th>Secure Memory Size</th>
<th>Application Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel SGX</td>
<td>Yes</td>
<td>Small</td>
<td>128 MB (useable: 94MB)</td>
<td>Required</td>
</tr>
<tr>
<td>AMD SEV</td>
<td>No</td>
<td>Large</td>
<td>Up to RAM size</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

Methodology

• Benchmarks used: NAS parallel benchmarks, LightGBM and GAPBS
• Platforms used: Intel Core i7-8700 (12 threads/socket) for SGX and AMD EPYC 7451 (dual socket with 48 threads/socket) for SEV study
• Use of SCONE (SGX) and Kata (SEV) containers
• Measured slowdown of the used workloads under secure execution on both platforms
• Relate the slowdown to other collected metrics
High slowdown, especially for graph workloads
Enclave Page Cache (EPC) Faults

Threads=6

Slowdown

NPB (Class C) GAPBS (synth) GAPBS (road) LGBM (mslr)

EPC Faults (PMI)

Threads=6

360 500

Enclave Page Cache (EPC) Faults

Slowdown

gmean

NPB gapbs_synth gapbs_road lgbm_mstr

EPC Faults (PMI)
Enclave Page Cache (EPC) Faults

All the benchmarks have large resident memory except ep & tc_synth
Impact of Increasing Execution Threads (under SGX)

Don't scale well, as they have large resident memory
Impact of Increasing Execution Threads (under SGX)

Scales normally under SGX and has a small memory footprint
Performance Impact of SEV
Virtualization appears to be the biggest reason of slowdown
Preliminary Takeaways

- HPC as a use-case for future TEEs
- Smaller slowdowns for SEV
- Performance issues for SGX
 - EPC faults
 - Multiple execution threads
- Dynamic choice of threat model

SEV and SGX slowdowns