
Towards	An	Open-Source,	Formally-Verified
Secure	Enclave

Dawn	Song
UC	Berkeley

The	Age	of	Big	Data

Plentiful,	and	Private

Current	Frameworks	for	Data	Analytics	&	Machine	Learning	

Data	Owners

Analyst

Data

Analytics	&
ML	Program

Computation
Infrastructure

Results

Current	Frameworks	Insufficient

Analyst

Data

ResultsAnalytics	&
ML	Program

Computation
Infrastructure

Threat	2:	
Untrusted	

infrastructure

Threat	1:
Untrusted	
program

Threat	3:
Sensitive	
results

Data	Owners

Desired	Solutions	for	Confidentiality/Privacy

Analyst

Data

ResultsAnalytics	&
ML	Program

Computation
Infrastructure

Threat	2:	
Untrusted	

infrastructure

Threat	1:
Untrusted	
program

Threat	3:
Sensitive	
results

Secure	
Computation

Program
Rewriting	&
Verification

Differential
Privacy

Desired
Solutions

Threats

Data	Owners

Secure	Computation:	Simulating	Trusted	Third	Party

• Does	my	secret	data	remain	secret?
• Does	the	program	execute	as	it	is	supposed	to?
• Is	the	right	program	executed?

Secure	Computation
• Example:

• Build	a	word-embedding	from	everyone’s	text	messages	on	their	phones

• Challenge:
• Text	messages	are	highly	sensitive
• Computation	infrastructure	may	not	be	trusted

• Solutions:
• Crypto-based	approach:

• Non-interactive:	Fully-homomorphic encryption	(FHE)
• Interactive:	Multi-party	computation	(MPC)

• Hardware-based	approach:
• Secure	enclave	provides	isolation	&	remote	attestation

Crypto-based	Secure	Computation
• Fully-homomorphic encryption	(FHE)

• Given	E(x),	f,	compute	E(f(x))
• Support	general	secure	computation	with	strong	security
• High	performance	overhead:	106	

• Example:	CryptoNet [Dowlin et	al.]
• Classification	of	an	encrypted	image	using	neural	networks
• On	MNIST:

• 51000	predictions	per	hour	on	a	single	PC
• 579	seconds	latency	per	image

• Multi-party	computation	(MPC)
• Trust	model:	at	most	t	out	of	k	parties	are	malicious
• Require	many	rounds	of	communication	among	different	parties

Hardware-based	secure	computation
• Trusted	Execution	Environment	(e.g.,	Intel	SGX)

• Secure	enclave:	isolation	&	attestation
• Protect	against	malicious	OS

• Enable	practical	secure	computation	over	encrypted	data
• In	contrast	to	fully-homomorphic encryption	(FHE)	with	10^6	
performance	overhead

• Many	other	security	applications

Program X

Enclave

Trusted Execution Environment (TEE)

Program X

Enclave

Integrity

OS and other processes
cannot tamper with execution
of X.

Confidentiality

OS and other processes
cannot learn state of X.*

Trusted Execution Environment (TEE)

Remote	attestation

Program X

attestation	att =	
𝚺intel[Build(X)	||	User	data]

SKX PKX

Secure	Enclave	as	a	CornerStone Security	Primitive

• Strong	security	capabilities
– Authenticate	“itself	(device)”
– Authenticate	“software”
– Guarantee	the	integrity	and	privacy	of	“execution”	

● Platform	for	building	new	security	applications
○ Couldn’t	be	built	otherwise	for	the	same	practical	performance
○ Many	examples

○ Haven	[OSDI’14],	VC3	[S&P’15],	M2R[USENIX	Security‘15],	
Ryoan [OSDI’16],	Opaque	[NSDI’17]

■ Single	node	or	distributed	computation	using	trusted	hardware

Whoever	Controls	&	Leads	in	AI	Will	Rule	the	World

--Nation	State	Leaders

The	Status	Quo	Today

Who	Will	Be	Running	Our	Lives?

Maximizing
Revenue

Maximizing
Revenue

Is	there	a	different	future?

Intelligent	Agent/Virtual	Assistant	under	User	Control	

Services

Services

Maximizing
User	Value

AIEden:	Blockchain for	Democratizing	AI

Ekiden:	Confidentiality-preserving	Smart	Contract
• Smart	contract	execution	using	secure	
computation:

• Trusted	hardware	and	
secure	multi-party	computation

• User	data	and	model	access	dictated	by	
smart	contract

• Expose	highly	available	micro-services	
to	users	and	other	smart	contracts

• Security	proof:	Universal	Composability

Model1

Blockchain
Model2 Model3

Differentially-private
Model	Training

Model
Serving

Private	Smart	Contract

Ekiden:	A	Platform	for	Confidentiality-Preserving,	Trustworthy,	and	Performant	Smart	Contract	Execution,	Cheng	et	al.,
https://arxiv.org/abs/1804.05141

Towards	Blockchain of	Intelligent	Smart	Contracts
Private	Smart	Contract

Model	Training

Model Serving

Differentially-private
Credit	Scoring	Model

Model	Training

Model Serving

Differentially-private
Smart	Building	Model

Model	Training

Model Serving

Differentially-private
Medical	Prediction	Model

Private	Smart	Contract Private	Smart	Contract

Model1 …
Blockchain

Model2 Model3

Growth	in	Secure Hardware Deployment
SGX:	Software	Guard	Extensions

● All	Intel	Core	Processors	since	August	2015	(6th-Generation	and	later)
● SGX	v2	expected	to	release	in	relatively	near	future

SEV:	Secure	Encrypted	Virtualization
● Introduced	in	EPYC	server	processor	line	(2017)
● Provides	confidentiality	but	not	integrity

AMD	Secure	Processor
● Built	into	AMD	Accelerated	Processing	Units	(APUs)

GlobalPlatform	Trusted	Execution	Environment
● Already	embedded	in	more	than	17	Billion	devices

Trusted	execution	environment
● Hardware-based	isolation	and	integrity	for	Tegra	chipsets
● TLK	(Trusted	Little	Kernel):	open-source	stack	for	TEE

Challenges	in	Secure	Hardware
● How	secure	can	it	be?	Under	what	threat	models?

● What	would	you	entrust	with	secure	hardware?

○ Your	bitcoin	keys

○ Financial	data

○ Health	data

Grand	Challenge
● Can	we	create	trustworthy	secure	enclave	as	a	cornerstone	security	

primitive?

● Widely	deployed,	enable	secure	systems	on	top

● A	new	secure	computation	era

Path	to	Trustworthy	Secure	Enclave
● Open	source	design

● Formal	verification

● Secure	supply-chain	management

Importance	of	Open	Source	Secure	Enclave	Design

• None	of	the	commercial	TEE	designs	is	opened	to	public
• Security	guarantee	relies	on	trusting	a	hardware	vendor’s	design
• No	industry	agreement	on	right	solution	for	everything
• Open	source	provides	transparency	&	enables	high	assurance
• Open	source	builds	a	community

RISC-V	Open-Source	Hardware	Ecosystem

• RISC-V:	A	high-quality,	license-free,	royalty-free	RISC	ISA	specification	
originally	from	UC	Berkeley

• Large	companies	started	to	adopt	RISC-V	for	deeply	embedded	
controllers	in	their	SoCs (e.g.,	NVIDIA,	Western	Digital)

• India	government,	US	DARPA,	and	Israel	have	adopted	RISC-V
• Many	startups	choosing	RISC-V	for	new	products
• Becoming	standard	ISA	for	academic	research

RISC-V	ISA		(www.riscv.org)

• A	completely	free	and	open	ISA	
• Upstreamed GCC,	Linux,	glibc,	LLVM,	…
• RV32,	RV64,	and	RV128	variants	for	32b,	64b,	and	128b	address	spaces	defined

• Base	ISA	only	<50	integer	instructions,	but	supports	compiler,	linker,	OS,	etc.
• Extensions	provide	full	general-purpose	ISA,	including	IEEE-754/2008	floating-point
• Better/comparable	ISA-level	metrics	to	other	ISAs	but	simpler
• Designed	for	extension,	customization
• Seventeen	64-bit	silicon	prototype	implementations	completed	at	Berkeley	so	far	
(45nm,	28nm,	16nm)

29

Foundation:	100+	Members

RISC-V	Foundation

0

20

40

60

80

100

Q3	2015 Q4	2015 Q1	2016 Q2	2016 Q3	2016 Q4	2016 Q1	2017 Q2	2017 Q3	2017 Q4	2017

RISC-V	Foundation	Growth	History
August	2015	to November	2017

Platinum Gold Silver Auditor Individual

30

Sanctum
• Secure	processor	design	on	RISC-V	
• Fully-isolated	per-enclave	page	table
• Defending	against	cache-based	side-channel	attacks

Project:	Open	Source	Secure	Enclave	on	RISC-V

32

• Full-stack	open-source	hardware	
enclave	implementation	for	RISC-V	
processors

• CPU
• RocketChip/BOOM:	Berkeley-built	Open-
Source	Cores

• TRNG
• Memory	Encryption	Engine	(MEE)

• Hardware	Enclave
• MIT	Sanctum:	Software-based	Hardware	
Enclave

• OS,	Library,	and	Applications DRAM

Security	Monitor	(Sanctum)

OS

Application

Secure	Boot	ROM TRNG

RocketChip/BOOM	Core(s)

CPU

User-level	Library

Application Application

Driver

MEE

FireSim:	Simulation	Framework
• FPGA-accelerated,	Cycle-accurate	
simulator	for	arbitrary	RTL	in	the	
public	cloud	(to	appear	in	ISCA	’18)

• Uses	a	commodity	host	platform	
with	FPGAs	(EC2	F1)

• Lets	users	work	with:
• RTL	(Chisel/Verilog)	for	customizing	
server	blades,	building	accelerators,	
etc.

• Software	models	(C++)	for	switches
• Runs	real	software	stacks	at	
reasonable	speed	(Linux	+	apps)

f1.2xlarge

FPGA	DRAM

Simulated	
Network	Switch

Simulation	
Controllers

NIC

DRAM	Model

RocketChip

MEE

TRNG

Endpoints

CPU FPGA

ROM

Devices

Full-stack	Simulation	of	RISC-V	TEE	with	FireSim

Chisel	Construction	Language

• Embed	hardware-description	language	in	Scala,	using	
Scala’s	extension	facilities:	Hardware	module	is	just	
data	structure	in	Scala

• Different	output	routines	generate	different	types	of	
output	(C,	FPGA-Verilog,	ASIC-Verilog)	from	same	
hardware	representation

• Full	power	of	Scala	for	writing	hardware	generators
• Object-Oriented:	Factory	objects,	traits,	overloading	etc
• Functional:	Higher-order	funcs,	anonymous	funcs,	currying
• Compiles	to	JVM:	Good	performance,	Java	interoperability

Chisel Program

C++
code FPGA

Verilog ASIC
Verilog

Software
Simulator

C++ Compiler

Scala/JVM

FPGA
Emulation

FPGA Tools

GDS
Layout

ASIC Tools

RISC-V	Chips	Designed	at	Berkeley

Aug
May

Raven-1

Raven-2

Raven-3 Raven-4

EOS14

EOS16
EOS18

EOS20
EOS22 EOS24

2012 2013 2014 2015

May Apr Aug
Feb Jul Sep Mar Nov Mar

SWERVE

Apr

Hurricane-1

2016
Jul Mar

Hurricane-2

CRAFT-0

2017

Craft-FFT2

CraftP1
BROOM

Goals

• Making	hardware	enclave	usable	to	everyone
• Improving	design	using	power	of	community
• Finding	and	patching	security	holes
• Exploring	performance-security	trade-offs	for	various	threat	models
• Finding	solutions	to	address	remaining	problems

• e.g.,	multi-node	enclaves,	side-channels,	performance,	and	physical	attacks

37

Timeline
Sanctum	on	cloud	

FPGAs

Secure	
Bootloader

ASAP (~May 2018)

Sanctum	on	
cloud	FPGAs

Security	Monitor
(SM)

Linux	+	SM	kernel	
module

SW	simulator	of	
Sanctum	HW

Secure	
Bootloader

Bare-metal	
binaries

Bare-metal	
binaries

(Fall 2018)

Enclave(s)

Secure	
Bootloader

Formal	specification	of	
Security	Monitor,	verified

Partially	implemented	
Security	Monitor

available implementation upcoming release

next releaseavailable spec ongoing work

authenticated

untrusted

trustedLegend: Can attest
Can sign

Is authenticated

Team

Ilia	Lebedev
MIT

ilebedev@mit.edu

Srini Devadas
MIT

devadas@mit.edu

Dayeol Lee
UC	Berkeley

dayeol@berkeley.edu

Krste Asanović
UC	Berkeley

krste@berkeley.edu

Dawn	Song
UC	Berkeley

dawnsong@berkeley.edu

Grand	Challenge:	Building	Trustworthy	Secure	Hardware

• Open	source	design

• Formal	verification
• Subramanyan et	al.,	A	Formal	Foundation	for	Secure	Remote	Execution	of	
Enclaves	[CCS	2017,	Best	Paper	Award]

• Secure	supply-chain	management

More	resources	needed	for	research	&	development.

It	requires	community	effort.

Let’s	tackle	the	big	challenges	together!

Grand	Challenge:	Building	Trustworthy	Secure	Hardware

