owards An Open-Source, Formally-Verified
Secure Enclave

Dawn Song
UC Berkeley

The Age of Big Data

Plentiful, and Private

Current Frameworks for Data Analytics & Machine Learning

£
o —
@ Data

Data Owners

& 7_ = =

= — &S o2
Analyst Analytics & Computation Results
ML Program Infrastructure

Current Frameworks Insufficient

Data Owners

s

Analyst

Analytics &
ML Program

Computation
nfrastructure

Threat 1: Threat 2: Threat 3:
Untrusted Untrusted Sensitive
program infrastructure results

Desired Solutions for Confidentiality/Privacy

Data Owners

s

Analyst

Analytics &
ML Program

Computation
nfrastructure

Th t Threat 1: Threat 2: Threat 3:
reats Untrusted Untrusted Sensitive
program infrastructure results
Desired Program Secure Differential
Solutions Rewriting & Computation Privacy

Verification

Secure Computation: Simulating Trusted Third Party

é)

gl \icrosoft
Wl Azure

amazon
web services™

 Does my secret data remain secret?
* Does the program execute as it is supposed to?
* |sthe right program executed?

Secure Computation

* Example:
* Build a word-embedding from everyone’s text messages on their phones

* Challenge:
* Text messages are highly sensitive
 Computation infrastructure may not be trusted

* Solutions:
* Crypto-based approach:

* Non-interactive: Fully-homomorphic encryption (FHE)
* Interactive: Multi-party computation (MPC)

* Hardware-based approach:
* Secure enclave provides isolation & remote attestation

Crypto-based Secure Computation

* Fully-homomorphic encryption (FHE)
e Given E(x), f, compute E(f(x))
e Support general secure computation with strong security
* High performance overhead: 10°

* Example: CryptoNet [Dowlin et al.]

* Classification of an encrypted image using neural networks
* On MNIST:

e 51000 predictions per hour on a single PC
* 579 seconds latency per image

* Multi-party computation (MPC)
* Trust model: at most t out of k parties are malicious
* Require many rounds of communication among different parties

Hardware-based secure computation

* Trusted Execution Environment (e.g., Intel SGX)
* Secure enclave: isolation & attestation
* Protect against malicious OS

* Enable practical secure computation over encrypted data

* In contrast to fully-homomorphic encryption (FHE) with 1076
performance overhead

* Many other security applications

Trusted Execution Environment (TEE)

Enclave

Trusted Execution Environment (TEE)

Integrity Confidentiality

\

OS and other processes OS and other processes
cannot tamper with execution Enclave cannot learn state of X *

of X.

Remote attestation

~| attestation att =
~ Zinwel[Build(X) | | User data]

SKX PKX

Secure Enclave as a CornerStone Security Primitive

. Strong security capabilities
- Authenticate “itself (device)”
- Authenticate “software”
- Guarantee the integrity and privacy of “execution”
o Platform for building new security applications
o Couldn’t be built otherwise for the same practical performance
o Many examples

o Haven [OSDI'14], VC3 [S&P’15], M2R[USENIX Security‘15],
Ryoan [OSDI’16], Opaque [NSDI'17]

= Single node or distributed computation using trusted hardware

Whoever Controls & Leads in Al Will Rule the World

--Nation State Leaders

The Status Quo Today

facebook

Who Will Be Running Our Lives?

i &% Maximizing

Google

facebook

Is there a different future?

Intelligent Agent/Virtual Assistant under User Control

Maximizing @

AlEden: Blockchain for Democratizing Al

Ekiden: Confidentiality-preserving Smart Contract

[] I . e
Smart con_tract execution using secure Private Smart Contract f?_"‘é

computatlon:
* Trusted hardware and : - - ¢
secure multi-party computation § leferentlally?p.nvate
e User data and model access dictated by Model Training

smart contract
* Expose highly available micro-services Model
to users and other smart contracts & <
: : . Serving
 Security proof: Universal Composability
I

I] Model, [l Model, L1 Model, :
?
| Blockchain - !

s s s s = W W W W W T TS TR O O W TR TR W W W W W W e e
Ekiden: A Platform for Confidentiality-Preserving, Trustworthy, and Performant Smart Contract Execution, Cheng et al.,

https.//arxiv.org/abs/1804.0514 1

Towards Blockchain of Intelligent Smart Contracts

Private Smart Contract Private Smart Contract Private Smart Contract

Model Training Model Training Model Training
Differentially-private Differentially-private Differentially-private
Credit Scoring Model Smart Building Model Medical Prediction Model

| Model Serving '!.}...3!': | Model Serving 'ég.é | Model Serving '{.}..3;‘
¢ ¢ ¢

Modely, al : Model; Toeg ™ ™ =

-
"BlockcHain = = ~

Growth in Secure Hardware Deployment

SGX: Software Guard Extensions

<|nte|> e AllIntel Core Processors since August 2015 (6th-Generation and later)

e SGX V2 expected to release in relatively near future

AMD Secure Processor
e Built into AMD Accelerated Processing Units (APUs)

AMDl‘rl SEV: Secure Encrypted Virtualization
e Introduced in EPYC server processor line (2017)
o Provides confidentiality but not integrity

@Z Trusted execution environment
e Hardware-based isolation and integrity for Tegra chipsets
NVIDIA e TLK (Trusted Little Kernel): open-source stack for TEE
ARM GlobalPlatform Trusted Execution Environment
e Already embedded in more than 17 Billion devices

Challenges in Secure Hardware

e How secure can it be? Under what threat models?

o What would you entrust with secure hardware?
o Your bitcoin keys
o Financial data

- Health data

Grand Challenge

o Can we create trustworthy secure enclave as a cornerstone security
primitive?

o Widely deployed, enable secure systems on top

o A new secure computation era

Path to Trustworthy Secure Enclave

o Open source design
e Formal verification

o Secure supply-chain management

Importance of Open Source Secure Enclave Design

* None of the commercial TEE designs is opened to public

e Security guarantee relies on trusting a hardware vendor’s design
* No industry agreement on right solution for everything

* Open source provides transparency & enables high assurance

* Open source builds a community

RISC-V Open-Source Hardware Ecosystem

* RISC-V: A high-quality, license-free, royalty-free RISC ISA specification
originally from UC Berkeley

* Large companies started to adopt RISC-V for deeply embedded
controllers in their SoCs (e.g., NVIDIA, Western Digital)

* India government, US DARPA, and Israel have adopted RISC-V
* Many startups choosing RISC-V for new products
* Becoming standard ISA for academic research

RISC-V ISA (www.riscv.org)

A completely free and open ISA
e Upstreamed GCC, Linux, glibc, LLVM, ...
 RV32, RV64, and RV128 variants for 32b, 64b, and 128b address spaces defined

Base ISA only <50 integer instructions, but supports compiler, linker, OS, etc.
Extensions provide full general-purpose ISA, including IEEE-754/2008 floating-point
Better/comparable ISA-level metrics to other ISAs but simpler

Designed for extension, customization

Seventeen 64-bit silicon prototype implementations completed at Berkeley so far
(45nm, 28nm, 16nm)

Berkeley

aictue DR AP E R bluespec O SKY Menlor- #LATTic

Mellanox cortus e
Mellanox [\ | Rambus Bysieie
aicron spmsune Google

- <A Quacomw N &"/
=== Western Digital. £ Microsemi nvibia.

HUAWEI

: 4y RISC Foundation: 100+ Members

770N
S o~ Ty
Q@ ESPRESSIF W ANDES L£)antmicro @ runtimeio D®VER BAE SYSTEMS
Eperanto B TECHNOLOGY —
nologies — 1: inside (.) N B ® WWW.GLORYSPACE CN
e @Slllcon "' ' secure ’RESEAREH " IDT > . ?..::,Gfﬁ, W N"l“JS" GOWlN
GRIDOOG LaurersacH JJ ISTUARY @
*Eyes on the Grid, Eyes on the Buck” DEVELOPMEN TTOOLS/‘ INTRINSIX mZUrICh Vi g *“ 1{56 (Q/é,gg!ﬁ!ﬁg eOdOSIQ
GREENY MITCSAIL A Imperas ———
O"Q-Roo Logic s“c I""nll“lﬂ Rumble TRINAMIC @ =
OCESSO
s| n Proven IP for FPGA and ASIC SH CONSULTING PR E R Development b XtremeEDA \ orBlox UB'L'TE @ SEAGATE
® P
TR oaes @ECOSM G i1 Syntacore ROEE Technolution
' SECURE’RF BERKELEY LAB lowRISC Techanalye SIEMENS UC TECH IP B |
ultra@_v F%d@”se PRINCETON P/

UNIVERSITY . | Blockstream

G dxcorr

§) cLosarounDriEs eXPresslogle

100

80

60

40

20

Q3 2015

RISC-V Foundation Growth History
August 2015 to November 2017

Q4 2015

Q1 2016

Q2 2016

M Platinum

Q3 2016

Gold

Q4 2016

Silver

Q1 2017

M Auditor

Q2 2017

M [ndividual

Q3 2017

Q4 2017

30

Sanctum

* Secure processor design on RISC-V
* Fully-isolated per-enclave page table
* Defending against cache-based side-channel attacks

Sanctum: Minimal Hardware Extensions for Strong Software Isolation

Victor Costan, Illia Lebedev, and Srinivas Devadas
victor@costan.us, ilebedev@mit.edu, devadas@mit.edu

MIT CSAIL

Abstract the public’s confidence in software systems has decreased
considerably. At the same time. key initiatives such as

Intel’s Software Guard Extensions (SGX) have cap-) R)
cloud computing and the IoT (Internet of Things) require

tured the attention of security practitioners by promising

Project: Open Source Secure Enclave on RISC-V

 Full-stack open-source hardware Application || Application || Application
enclave implementation for RISC-V —
processors ser-ievel Liprary

e CPU Driver 0S

* RocketChip/BOOM: Berkeley-built Open-
Source Cores

Security Monitor (Sanctum)

* TRNG
* Memory Encryption Engine (MEE) Secure Boot ROM TRNG | CPU
e Hardware Enclave MEE RocketChip/BOOM Core(s)
e MIT Sanctum: Software-based Hardware
Enclave

* OS, Library, and Applications DRAM

FireSim: Simulation Framework
amazon

fl.2xlarge webservices
* FPGA-accelerated, Cycle-accurate P m—mm e m—mm——— - ———-————--

|
simulator for arbitrary RTL in the , CPY FPGA !
public cloud (to appear in ISCA’18) | p— L Endpoints !
¥
* Uses a commodity host platform | | L_Controllers ——T ||
with FPGAs (EC2 F1) : I — ||
) | .
 Lets users work with: ! Simulated | Rocierehie :
* RTL (Chisel/Verilog) for customizing | | Network Switch ROM |
server blades, building accelerators, : TRNG |
etc ' :
. I v
|
* Software models (C++) for switches ; IMEE :
| v
* Runs real software stacks at : PGADRAM k——bI " DRAM Model |
|

reasonable speed (Linux + apps) ;

— e o o O EEE e e e O EEE EEE B B B B . EEe B Eae Eee e e e e s

Full-stack Simulation of RISC-V TEE with FireSim

Chisel Construction Language

 Embed hardware-description language in Scala, using Chisel Program
Scala’s extension facilities: Hardware module is just T
data structure in Scala < ScalalbvM >

» Different output routines generate different types of
output (C, FPGA-Verilog, ASIC-Verilog) from same
hardware representation

Verilog

C++ Compiler

* Full power of Scala for writing hardware generators [ST
* Object-Oriented: Factory objects, traits, overloading etc rv— | @
* Functional: Higher-order funcs, anonymous funcs, currying Simulator FPGA
» Compiles to JVM: Good performance, Java interoperability Emulation GDS

Layout

RISC-V Chips Designed at Berkeley

Raven-2

goTTTTTTTTTITITY Hurricane-1 CraftP1

Hurricane-2

CRAFT-0

SWERVE i
EOS22 EOS24 Craft-FFT2

Goals

* Making hardware enclave usable to everyone

* Improving design using power of community

* Finding and patching security holes

* Exploring performance-security trade-offs for various threat models

* Finding solutions to address remaining problems
e e.g., multi-node enclaves, side-channels, performance, and physical attacks

Legend: Can attest F‘@ trusted

TI m e ‘ | n e Can Sign(g‘(authenticated

Is authenticated #f untrusted
SW simulator of i Sanctum on cloud . Sanctum on
Sanctum HW : FPGAs : cloud FPGAs (=]

Secure : Secure Secure =
Bootloader @, : Bootloader Q! Bootloader @ o

- L& Security Monitor
Bare-metal - Bare-metal (SM) r\ E]@
binaries 4 (@, FI : binaries 4 (@ =) : H@ L

o : s : Linux + SM kernel

available implementation - upcoming release - ez
Formal specification of : Partially implemented : Enclave(s) |
Security Monitor, verified : Security Monitor : #_‘Q(&?\
available spec ongoing work next release

> >
ASAP (~May 2018) (Fall 2018) .

llia Lebedev Srini Devadas Dayeol Lee Krste Asanovié Dawn Song

MIT MIT UC Berkeley UC Berkeley UC Berkeley
ilebedev@mit.edu devadas@mit.edu dayeol@berkeley.edu krste@berkeley.edu dawnsong@berkeley.edu

Institute of

I I I B Massachusetts
Technology

) Berkeley

UNIVERSITY OF CALIFORNIA

Grand Challenge: Building Trustworthy Secure Hardware

* Open source design

 Formal verification

e Subramanyan et al., A Formal Foundation for Secure Remote Execution of
Enclaves [CCS 2017, Best Paper Award]

* Secure supply-chain management

Grand Challenge: Building Trustworthy Secure Hardware

More resources needed for research & development.
It requires community effort.

Let’s tackle the big challenges together!

